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USE IN ATLAS =
Efficient triggers and ID — analyses with electrons
benefit from improved background rejection o

Accurate reconstruction — final states with
electrons have reduced systematics

o Extending the range of electron algorithms - more
physics searches are possible

o But room for improvement!




Electron Software

o Create clusters from energy
deposits in EM Calo

o Create tracks from hitsin
the inner detector

o Form electron candidates by

matching tracks to clusters
o Basedonenergy, location,
and hit types




Electron Software

|dentification

o Createclustersfromenergy © Calculate physics

deposits in EM Calo motivated variables
o Create tracks from hits in o Calculate Likelihood
the inner detector o Formed from PDFs of

electron variables
o Evaluate LH score
compared to

o Form electron candidates by

matching tracks to clusters
o Basedonenergy, location,

and hit types recommendations
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Electron Software

|dentification Energy Regression
o Createclustersfromenergy © Calculate physics o Calculate potential loss due
deposits in EM Calo motivated variables to bremsstrahlung
o Create tracks from hits in o Calculate Likelihood o Consider cluster width
the inner detector o Formed from PDFs of variability and electronics
o Form electron candidates by . eIIeCtrtonlj’lj”ables gain
matching tracks to clusters © Evaltate LH score o Combine effects to get
o Based on energy, location, comparedto corrected electron energy
and hit types recommendat|ons
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A New Way to Look at Electrons

Cells in Layer 3
ApxAn = 0.0245%0.05

o Most electron algorithms currently combine

calculated variables

>  MVA techniques can exploit smaller differences
in distributions

> But potential for information loss is still present

o We could instead look at direct read-outs of the "%

detector e

> One way to represent this information is images . Iﬂm ER

> Consider ‘unrolling’ the calorimeter and TRt Toamss
representing cells as pixels
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Computer Vision

o Convolutional Neural Networks (CNNs) are a popular ML technique for
processing images

1. ‘Readin’images as a matrix of pixels with numerical values
2. Convolve the image with filters to create multiple high-level
representations of the original image

3. Use these representations as input to classification or other task

e

N

——
;"
' |7 ] [] — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN com:gno SOFTMAX

HIDDEN LAYERS CLASSIFICATION




Computer Vision

o Convolutional Neural Networks (CNNs) are a popular ML technique for
processing images

1. ‘Readin’images as a matrix of pixels with numerical values
2. Convolve the image with filters to create multiple high-level
representations of the original image

3. Use these representations as input to classification or other task

o Different filters learn different features/aspects of the image
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CNNs for Electrons

Initial architecture design utilizing all 4 layer images

input: | (None, 16, 4, 1) input: | (None, 128, 4, 1) input: | (None, 16, 16, 1) input: | (None, 8, 8, 1)
input_layer0: InputLayer input_layer]: InputLayer input_layer2: InputLayer input_layer3: InputLayer
output: | (None, 16, 4, 1) output: | (None, 128, 4, 1) output: | (None, 16, 16, 1) output: | (None, 8, 8, 1)

/

input: (None, 16,4, 1) input: | (None, 128, 4, 1) input: | (None, 16, 16, 1)
up_sampling2d_109: UpSampling2D up_sampling2d_110: UpSampling2D up_sampling2d_I11: UpSampling2D up_sampling2d_1/ _: UpSampling2D
output: | (None, 128, 128, 1) output: | (None, 128, 128, 1) output: | (None, 128, 128, 1)

input: (None, 8, 8, 1)
output: | (None, 128, 128, 1)

input: | [(None, 128, 128, 1), (None, 128, 128, 1), (None, 128, 128, 1), (None, 128, 128, 1)]
output: (None, 128, 128, 4)

concatenate_52: Concatenate

input: | (None, 128, 128, 4)

cups: | one, 128,125 1 Input separate image for
e g each layer for a single
output: | (None, 128, 128, 16) electron Candidate

conv2d_33: Conv2D

activation_63: Activation

input: | (None, 128, 128, 16)

max_pooling2d_26: MaxPooling2D
pooling2d s output: | (None, 64, 64, 16)

input: | (None, 64, 64, 16)

flatten_17: Flatten
output: |  (None, 65536)
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output: | (None, 128, 128, 16) e I eCt ro n Ca n d i d ate
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: e [ BB Input separate image for

common granularity put sep ag
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output: | (None, 128, 128, | e I eCt ro n Ca n d i d ate

activation_63: Activation
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memory/training time
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CNNs for Electrons

Initial architecture design utilizing all 4 layer images

input: | (None, 16, 4, 1) input: | (None, 128, 4, 1) input: | (None, 16, 16, 1) input: | (None, 8, 8, 1)
input_layer0: InputLayer input_layer]: InputLayer input_layer2: InputLayer input_layer3: InputLayer
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up_sampling2d_109: UpSampling2D up_sampling2d_110: UpSampling2D up_sampling2d_I11: UpSampling2D up_sampling2d_1/ _: UpSampling2D
output: one, 128, 128, | output: one, 128, 128, | output: one, 128, 128, 1 output: one, 128, 128, 1
P P P P
input: | [(None, 128, 128, 1), (None, 128, 128, 1), (None, 128, 128, 1), (None, 128, 128, 1)]

)

concatenate_52: Concatenate

Up-sample all images to
common granularity

[Stack all images into 3-D

]

Flatten to 2-D

w

output: (None, 128, 128, 4)
input: | (None, 128, 128, 4)
conv2d.33: Conv2D output: | (None, 128, 128, 16) I t t H f
nput separate image 1or
e 5 each layer for a single
activation_63: Activation - ~ TR I t d'd t
e electron candidate
. . input: | (None, 128, 128, 16)
max_pooling2d_26: MaxPooling2D outpat | (None, 64,64, 16) A I h d I t'
e pply a shared convolution
input: | (None, 64, 64, 16
flatten_17: Flatten
output: |  (None, 65536)

p
Down-sample to reduce

memory/training time
\

> LTTTE

Input to a standard NN or other MVA




CNNs for Electrons

IDENTIFICATION

o Input processed images to a fully-
connected NN

o Train NN for binary-classification:
electrons=1 background=0

o Promising results with simple design
and no tuning!
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REGRESSION

Input processed images to a fully-
connected NN

Train NN to produce scale-factor to
apply to reconstructed energy

Not so great results....37% of ATLAS
performance

N points train/test 109224 / 27306 g )
RMS9G AT/CNN ATLAS [-0.06,0.07]
CNNcp 0.368 [ Seperate [-0.13,0.18]
CNN.om 9.368

ATLAS Work in
Progress
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On-going Work

o Consider other architectures:
o Separate convolutions for each layer (no need to up-sample)
o 3D convolution (allows network to learn relationship between layers)
o Optimize hyper-parameters and network design
o Explore options for including track information
o Add variables to fully connected DNN
o Create track images by projecting hits into 2-D plane
o Evaluate feasibility of training on data

o Purityis aconcern for data samples, but accurate modeling is a concern for MC
o Can also use GAN to create better simulations

o Exciting results to come!




Thanks!

Any questions?

Savannah Thais
savannah.thais@yale.edu




